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Lecture no. 7 

Finite Element Method 

• Define the approximating functions locally over “finite elements” 

Advantages 

• It’s much easier to satisfy the b.c.’s with local functions over local parts of the boundary 

than it is with global functions over the entire boundary. 

•  Splitting the domain into intervals and using lower order approximations within each 

element will cause the integral error to assure better accuracy on a pointwise basis. 

(Courant, 1920). 

An integral norm attempts to minimize total error over the entire domain. A low integral 

norm does not always mean that we have good pointwise error norm. 

• The properties of the matrices will generally be much better than when using globally 

defined trial functions. 
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General Steps to FEM 

•  Divide the domain into N sub-intervals or finite elements. 

•  Develop interpolating functions valid over each element. We will make use of localized 

coordinate systems to assure functional universality (i.e. they will be applicable to any 

length element at any location). 

We will tailor these functions such that the required degree of functional continuity can 

be readily enforced. 

•  Enforce functional continuity – 2 options 

• Through definition of Cardinal basis 

• Through “global” matrix assembly 

• Note that we use these interpolating functions in conjunction with the implementation of 

the desired weighted residual form (i.e. integrations etc.) as before. 
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Lagrange Interpolation 

Lagrange Interpolation : pass an approximating function, g(x), exactly through the 

functional values at a set of interpolation points or nodes. 
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• Method 1 to deriving g(x) – Power series: 

─ We are given 𝑓𝑓0, 𝑓𝑓1, 𝑓𝑓2 and corresponding points 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2 

─ Constraints we can apply 

 𝑔𝑔(𝑥𝑥0 = 0) =  𝑓𝑓0 

 𝑔𝑔(𝑥𝑥1 = ℎ) =  𝑓𝑓1 

 𝑔𝑔(𝑥𝑥2 = 2ℎ) =  𝑓𝑓2 

3 Constraints ⇒ 3 d.o.f/3 nodes = 1 d.o.f/node 

     ⇒ Polynomial form g(x) can have 3 d.o.f ⇒ quadratic 

─ General form of g(x) 

 𝑔𝑔(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐𝑥𝑥2 

─ Apply constraints 

 𝑔𝑔(𝑥𝑥0 = 0) = 𝑓𝑓0      ⇒     𝑎𝑎 = 𝑓𝑓0 

 𝑔𝑔(𝑥𝑥1 = ℎ) = 𝑓𝑓1      ⇒     𝑎𝑎 + 𝑏𝑏ℎ + 𝑐𝑐ℎ2 = 𝑓𝑓1 

 𝑔𝑔(𝑥𝑥2 = 2ℎ) = 𝑓𝑓2   ⇒       𝑎𝑎 + 2ℎ𝑏𝑏 + 4ℎ2𝑐𝑐 = 𝑓𝑓2 
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• Solve a system of simultaneous equations. 
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 Interpolating function throughout interval of interest [0,2ℎ] 
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• Let’s rewrite 𝑔𝑔(𝑥𝑥) 

Factor out of 𝑓𝑓0, 𝑓𝑓1 and 𝑓𝑓2 

𝑔𝑔(𝑥𝑥) = 𝑓𝑓0 �1 − 3𝑥𝑥
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𝑥𝑥2��������������
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ℎ2
𝑥𝑥2����������

≡𝜙𝜙1(𝑥𝑥)

+ 𝑓𝑓2 �−
1
2ℎ
𝑥𝑥 + 1

2ℎ2
𝑥𝑥2������������

≡𝜙𝜙2(𝑥𝑥)

  

⇒  

• 𝑔𝑔(𝑥𝑥) = ∑ 𝑓𝑓𝑖𝑖 𝜙𝜙𝑖𝑖(𝑥𝑥)���2
𝑖𝑖=0   

     𝜙𝜙𝑖𝑖(𝑥𝑥) are the Interpolating basis functions!! 

     Each is associated with one node. 

     Looks very much like expansions we used for w.r. methods!!! 

• Let’s plot these functions 

                     𝜙𝜙0(𝑥𝑥0 = 0) = 1          𝜙𝜙1(𝑥𝑥0 = 0) = 0             𝜙𝜙2(𝑥𝑥0 = 0) = 0 

                                      𝜙𝜙0(𝑥𝑥1 = ℎ) = 0           𝜙𝜙1(𝑥𝑥1 = ℎ) = 1            𝜙𝜙2(𝑥𝑥1 = ℎ) = 0 

                                 𝜙𝜙0(𝑥𝑥2 = 2ℎ) = 0        𝜙𝜙1(𝑥𝑥2 = 2ℎ) = 0          𝜙𝜙2(𝑥𝑥2 = 2ℎ) = 1 
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• Thus 𝜙𝜙𝑖𝑖�𝑥𝑥𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑗𝑗 = 1    𝑖𝑖 = 𝑗𝑗
0    𝑖𝑖 ≠ 𝑗𝑗    

We can in fact use these constraints to derive  𝜙𝜙0,  𝜙𝜙1 and 𝜙𝜙2 
                                                        

• Thus interpolating functions are 1 at nodes they are associated with and 0 at all other 

nodes. At x values other than nodal values these functions vary and do not equal zero 

 

 

 

• A very important consequence of using Lagrange interpolation is that 

𝑔𝑔(𝑥𝑥𝑖𝑖) = 𝑓𝑓𝑖𝑖 

This property and the fact that we define nodes on inter-element boundaries will enable us 

to easily enforce functional continuity on inter-element boundaries 
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Applying Lagrange Interpolation to develop 𝒖𝒖𝒂𝒂𝒂𝒂𝒂𝒂 

Option 1 – Develop a higher order approximation which is global and based on Lagrange 

basis function defined over the entire domain. 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = �𝑢𝑢𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

where 

𝜙𝜙𝑖𝑖 = globally defined Lagrange basis functions valid over the entire domain 

𝑢𝑢𝑖𝑖 = the expansion coefficients and by definition these equal the function values at the nodes!! 

𝑖𝑖 = 1,𝑁𝑁 are the N “nodes” defined throughout the global domain 

            These nodes can be equispaced or nonequispaced 
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• Boundary conditions can be readily incorporated into the expansion if they are function 

specified (essential type boundary conditions) 

─ For example     𝑢𝑢(𝑥𝑥𝐿𝐿) = 𝑢𝑢𝐿𝐿 

 𝑢𝑢(𝑥𝑥𝑅𝑅) = 𝑢𝑢𝑅𝑅 

─ The expansion can now be written as 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝐿𝐿𝜙𝜙1 + 𝑢𝑢𝑅𝑅𝜙𝜙𝑁𝑁 + �𝑢𝑢𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁−1

𝑖𝑖=2

 

     (since 𝑢𝑢1 = 𝑢𝑢𝐿𝐿 and 𝑢𝑢𝑁𝑁 = 𝑢𝑢𝑅𝑅) 

─ Thus 

𝑢𝑢𝐵𝐵 = 𝑢𝑢𝐿𝐿𝜙𝜙1 + 𝑢𝑢𝑅𝑅𝜙𝜙𝑁𝑁 

─ We note that 𝑢𝑢𝐵𝐵 satisfies admissibility conditions 

𝑢𝑢𝐵𝐵(𝑥𝑥𝐿𝐿) = 𝑢𝑢𝐿𝐿 𝜙𝜙1(𝑥𝑥𝐿𝐿)�����
=1

+ 𝑢𝑢𝑅𝑅 𝜙𝜙𝑁𝑁(𝑥𝑥𝐿𝐿)�����
=0

= 𝑢𝑢𝐿𝐿 

𝑢𝑢𝐵𝐵(𝑢𝑢𝑅𝑅) = 𝑢𝑢𝐿𝐿 𝜙𝜙1(𝑥𝑥𝑅𝑅)�����
=0

+ 𝑢𝑢𝑅𝑅 𝜙𝜙𝑁𝑁(𝑥𝑥𝑅𝑅)�����
=1

= 𝑢𝑢𝑅𝑅 
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─ Also we note that the remaining 𝜙𝜙𝑖𝑖      𝑖𝑖 = 2,𝑁𝑁 − 1 satisfy 

𝜙𝜙𝑖𝑖(𝑥𝑥𝐿𝐿) = 0
                                         →

𝜙𝜙𝑖𝑖(𝑥𝑥𝑅𝑅) = 0
  𝑖𝑖 = 2,𝑁𝑁 − 1 

• Thus satisfying function specified b.c.’s (essential) for 1-D is very easy!! For natural b.c.’s 

it is much more difficult.  

• The sequence of functions 𝜙𝜙𝑖𝑖 are linearly independent 

• The coefficients in the expansion are now actually equal to the values of the function at the 

nodes!! 

• The drawback of option 1 is that you obtain poor pointwise convergence as N becomes 

large for most problems. 

• Another drawback is that the matrix will also be almost fully populated and will be poorly 

conditioned 

•  Typically the technique does work well for slowly varying smooth solutions. 
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Example 

Solve 𝐿𝐿(𝑢𝑢) = 𝑝𝑝(𝑥𝑥)          𝑥𝑥 ∈ [𝑥𝑥𝐿𝐿, 𝑥𝑥𝑅𝑅] 

b.c.’s 𝑢𝑢(𝑥𝑥𝐿𝐿) = 𝑢𝑢𝐿𝐿 

  𝑢𝑢(𝑥𝑥𝑅𝑅) = 𝑢𝑢𝑅𝑅 

Assume that we will apply a six term expansion 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝐿𝐿𝜙𝜙1 + 𝑢𝑢𝑅𝑅𝜙𝜙6 + �𝑢𝑢𝑖𝑖𝜙𝜙𝑖𝑖

5

𝑖𝑖=2
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• Note that 𝑢𝑢𝐵𝐵 = 𝑢𝑢𝐿𝐿𝜙𝜙1 + 𝑢𝑢𝑅𝑅𝜙𝜙6 

• 𝑢𝑢𝐵𝐵 satisfies b.c.’s as specified 

• Note that 𝜙𝜙2,𝜙𝜙3,𝜙𝜙4 and 𝜙𝜙5 all satisfy the homogeneous form of the essential 

function specified b.c.’s 
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Option 2 – Develop an approximation 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 which is the sum of localized approximations 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = ��𝑢𝑢𝑖𝑖
𝑗𝑗𝜙𝜙𝑖𝑖

𝑗𝑗

𝑁𝑁𝑗𝑗

𝑖𝑖=1

  𝑀𝑀

𝑗𝑗=1

 

    Where 𝑢𝑢𝑖𝑖
𝑗𝑗 = expansion coefficient for element j and node i within element j 

            𝜙𝜙𝑖𝑖
𝑗𝑗 =  Lagrange basis function for element j and node i  

     Note that 𝜙𝜙𝑖𝑖
𝑗𝑗 ≡ 0   outside of element  j 

             𝑗𝑗 = 1,𝑀𝑀 = total number of localized domains or “finite elements” 

     𝑖𝑖 = 1,𝑁𝑁𝑗𝑗 = total number of nodes within element j 
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Local unknowns at nodes 

                                         𝑢𝑢11  𝑢𝑢31  𝑢𝑢31      𝑢𝑢13    𝑢𝑢23 𝑢𝑢33  𝑢𝑢43      𝑢𝑢53    𝑢𝑢63 

                                         𝑢𝑢12 𝑢𝑢22 𝑢𝑢32                           𝑢𝑢14  𝑢𝑢24  𝑢𝑢34 ← 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑥𝑥       
← 𝑒𝑒𝑙𝑙𝑐𝑐𝑎𝑎𝑒𝑒 𝑒𝑒𝑙𝑙𝑖𝑖𝑒𝑒 𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑥𝑥      

• The boundary conditions can again be readily built into 1-D type problems for function 

specified conditions (essential). Even in multiple dimensions, function specified b.c.’s 

(essential) can be incorporated in a straight forward manner 

• The sequence of all functions will be linearly independent. 

• Again note that those coefficients of expansion are equal to the actual function values at the 

nodes 
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• To ensure 𝐶𝐶0 inter-element functional continuity we must have at all inter-element 

boundaries: 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎(left of an inter-element boundary) = 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 (right of an inter-element boundary) 

    Thus in the example given 

 Anywhere in element 1 

𝑢𝑢1(𝜉𝜉) = 𝑢𝑢11𝜙𝜙11(𝜉𝜉) + 𝑢𝑢21𝜙𝜙21(𝜉𝜉) + 𝑢𝑢31𝜙𝜙31(𝜉𝜉) 

     Note that all other Lagrange basis function from other elements are defined as zero. 

        Anywhere in element 2 

𝑢𝑢2(𝜉𝜉) = 𝑢𝑢12𝜙𝜙12(𝜉𝜉) + 𝑢𝑢22𝜙𝜙22(𝜉𝜉) + 𝑢𝑢31𝜙𝜙32(𝜉𝜉) 

      Element 1 evaluated at r.h.s. of the element 

𝑢𝑢1(𝜉𝜉31) = 𝑢𝑢31 

      Element 2 evaluated at l.h.s. of the element 

𝑢𝑢2(𝜉𝜉12) = 𝑢𝑢12 

      In order to enforce 𝑐𝑐0 functional continuity we must have 

𝑢𝑢1(𝜉𝜉31) = 𝑢𝑢2(𝜉𝜉12) 

∴      𝑢𝑢31 = 𝑢𝑢12 
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• In general we must have the expansion coefficients equal at inter-element boundaries in 
order to satisfy 𝑐𝑐0 functional continuity requirements 

• In our example, the expansion coefficients are related as  

𝑢𝑢31 = 𝑢𝑢12 

𝑢𝑢32 = 𝑢𝑢13 

𝑢𝑢63 = 𝑢𝑢14 

           ∴  We must have expansion coef.’s at inter-element boundaries be equal 

• There are several approaches to implement the inter-element functional continuity (i.e. 

setting equal the adjacent inter-element expansion coef.’s) 

─ Develop “Cardinal” basis functions which are formed by patching together the 

localized Lagrange functions and defining them globally. This also implies that you 

redefine the expansion coef.’s globally (so that there will now be only one coef. per 

global node) 

─ Actually implement all expansions locally. Then take care of inter-element functional 

continuity by assembling the “global” matrix correctly 
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Notes 

•  Boundary condition implementation/satisfaction as well as inter-element functional 

continuity enforcement are made simple and possible by the use of Lagrange basis 

functions. However we must place nodes at the ends of the domain as well as at the ends of 

each element for this to work. 

• The advantages of defining local functions are: 

─ Essential function specified b.c.’s are very easy to implement in 2-D and 3-D as well 

as 1-D 

─ Excellent pointwise as well as integral norm convergence 

─ Matrices are sparse with a limited number of non-zero entries per row and the 

conditioning of the matrix will be better 
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• Solve 𝐿𝐿(𝑢𝑢) = 𝑝𝑝(𝑥𝑥) [𝑥𝑥𝐿𝐿, 𝑥𝑥𝑅𝑅] 

      𝑢𝑢(𝑥𝑥𝐿𝐿) = 𝑢𝑢𝐿𝐿 

      𝑢𝑢(𝑥𝑥𝑅𝑅) = 𝑢𝑢𝑅𝑅  

• Consider the following 6 global nodes defined over 4 elements 
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• We will have the following elemental based expansion 

    
               part of uB         ↓    ↓   elemental index 
𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝐿𝐿𝜙𝜙11 + 𝑢𝑢21𝜙𝜙21                                            Element 1 
            ↑   ↑   local node index 
                                                           
               + 𝑢𝑢12𝜙𝜙12 + 𝑢𝑢22𝜙𝜙22 + 𝑢𝑢32𝜙𝜙32                          Element 2 

                      + 𝑢𝑢13𝜙𝜙13 + 𝑢𝑢23𝜙𝜙23                                      Element 3 

                      + 𝑢𝑢14𝜙𝜙14 + 𝑢𝑢𝑅𝑅𝜙𝜙24   ← part of 𝑢𝑢𝐵𝐵                  Element 4 

• This is a local expansion!! 

• It has 7 elemental unknowns 

• However 3 functional continuity constraints will be applied 
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• We can also patch together functions and form truly “global” functions. These are called 

“Cardinal” bases 
           part of 𝑢𝑢𝐵𝐵 

 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝐿𝐿𝛷𝛷𝑛𝑛1��� + 𝑢𝑢𝑛𝑛2𝛷𝛷𝑛𝑛2 + 𝑢𝑢𝑛𝑛3𝛷𝛷𝑛𝑛3 + 𝑢𝑢𝑛𝑛4𝛷𝛷𝑛𝑛4  

              +𝑢𝑢𝑛𝑛5𝛷𝛷𝑛𝑛5 + 𝑢𝑢𝑅𝑅𝛷𝛷𝑛𝑛6 ← part of 𝑢𝑢𝐵𝐵  

 

𝛷𝛷𝑛𝑛1 = 𝜙𝜙11            𝑢𝑢𝑛𝑛1 = 𝑢𝑢11 = 𝑢𝑢𝐿𝐿  essential b.c 

𝛷𝛷𝑛𝑛2 = 𝜙𝜙21 + 𝜙𝜙12         𝑢𝑢𝑛𝑛2 = 𝑢𝑢21 = 𝑢𝑢12  unknown 

𝛷𝛷𝑛𝑛3 = 𝜙𝜙22           𝑢𝑢𝑛𝑛3 = 𝑢𝑢22   unknown 

𝛷𝛷𝑛𝑛4 = 𝜙𝜙32 + 𝜙𝜙13         𝑢𝑢𝑛𝑛4 = 𝑢𝑢32 = 𝑢𝑢13  unknown 

𝛷𝛷𝑛𝑛5 = 𝜙𝜙23 + 𝜙𝜙14         𝑢𝑢𝑛𝑛5 = 𝑢𝑢23 = 𝑢𝑢14  unknown 

𝛷𝛷𝑛𝑛6 = 𝜙𝜙24     ���               𝑢𝑢𝑛𝑛6 = 𝑢𝑢24 = 𝑢𝑢𝑅𝑅�����  essential b.c. 
 local functions     local coef.’s or unknown functions 

↑ Cardinal or global functions  ↑ Global coef.’s or unknown functions 
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Notes  

• The global or Cardinal basis functions and approximation automatically satisfy      

functional continuity. This is not true for local expansions for which we must still enforce 

the functional continuity constraints. 

• However it will be very easy to handle the functional continuity constraints and it is much 

easier to work with the local functions in a finite element grid. 
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• Global basis functions 
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Local Lagrange basis functions 

• Define a “unit” element with a local coordinate system 

−1 ≤ 𝜉𝜉 ≤ +1 

 

 

 

• Map the element j which lies in the interval 𝑥𝑥𝑗𝑗 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑗𝑗+1 to the unit element. 
The transformation and its inverse are: 

𝜉𝜉 = −1 + 2�𝑥𝑥 − 𝑥𝑥𝑗𝑗�/�𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗� 

and 

𝑥𝑥 = 𝑥𝑥𝑗𝑗 + �𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗�(𝜉𝜉 + 1)/2 

• Define the function associated with each node in a local coordinate system: 

𝜙𝜙1(𝜉𝜉) = 𝑎𝑎1 + 𝑏𝑏1𝜉𝜉 

𝜙𝜙2(𝜉𝜉) = 𝑎𝑎2 + 𝑏𝑏2𝜉𝜉 
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• Apply constraints to solve for the coefficients 

𝜙𝜙1(𝜉𝜉1) = 1     𝜙𝜙1(𝜉𝜉2) = 0 

𝜙𝜙2(𝜉𝜉1) = 0     𝜙𝜙2(𝜉𝜉2) = 1 

• This leads to: 

𝜙𝜙1(𝜉𝜉) =
1
2

(1 − 𝜉𝜉) 

𝜙𝜙2(𝜉𝜉) =
1
2

(1 + 𝜉𝜉) 

 

 

 

 

• These functions represent the linear Lagrange interpolation functions. These allow 

𝑪𝑪𝒐𝒐 functional continuity and each local basis function equals unity at the associated 

node and zero elsewhere. 
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• These local basis functions on the unit element are related to those defined over the 𝑗𝑗𝑡𝑡ℎ 

element by 

𝜙𝜙1(𝜉𝜉) = 𝜙𝜙2𝑗𝑗−1�𝑥𝑥(𝜉𝜉)� = 𝜙𝜙2𝑗𝑗−1(𝑥𝑥) 

𝜙𝜙2(𝜉𝜉) = 𝜙𝜙2𝑗𝑗�𝑥𝑥(𝜉𝜉)� = 𝜙𝜙2𝑗𝑗(𝑥𝑥) 

where 𝜙𝜙2𝑗𝑗−1(𝑥𝑥) and 𝜙𝜙2𝑗𝑗(𝑥𝑥) are defined as nonzero for 𝑥𝑥𝑗𝑗 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑗𝑗+1 and zero everywhere 

else. 

 

• We note that 

𝑢𝑢�𝑒𝑒 = α1𝜙𝜙1(𝜉𝜉) + α2𝜙𝜙2(𝜉𝜉) 

Therefore: 

𝑢𝑢�𝑒𝑒(𝜉𝜉1) = α1     𝑢𝑢�𝑒𝑒(𝜉𝜉2) = α2 

Therefore the coefficients of the elemental expansion equals the actual value of the 

function at the nodes! 
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• Derivatives of 𝜙𝜙2𝑗𝑗−1(𝑥𝑥) w.r.t. x 

𝑖𝑖𝜙𝜙2𝑗𝑗−1
𝑖𝑖𝑥𝑥 =

𝑖𝑖𝜙𝜙1
𝑖𝑖𝑥𝑥 =

𝑖𝑖𝜙𝜙1
𝑖𝑖𝜉𝜉

𝑖𝑖𝜉𝜉
𝑖𝑖𝑥𝑥

=
2

�𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗�
𝑖𝑖𝜙𝜙1
𝑖𝑖𝜉𝜉  

and 

𝑖𝑖𝜙𝜙2𝑗𝑗
𝑖𝑖𝑥𝑥 =

2
�𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗�

𝑖𝑖𝜙𝜙2
𝑖𝑖𝜉𝜉  

Note that these formula are valid whether or not elements of equal length are used. If  

�𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗� = ∆𝑥𝑥 is constant, then derivatives of the basis functions w.r.t., 𝑖𝑖𝜙𝜙𝑗𝑗/𝑖𝑖𝑥𝑥, are 

related by the constant 2/∆𝑥𝑥 to the derivatives w.r.t. 𝜉𝜉 of these functions. 

 

Cardinal Basis Functions 

• If we piece together the elemental functions such that we eliminate or satisfy the 

functional continuity requirements we form the cardinal basis functions: 

 𝛷𝛷𝑖𝑖(𝑥𝑥) = chapeau functions (also called rooftop or tophat functions) 
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• Previously we had: 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑢𝑢1
𝑒𝑒𝑒𝑒𝑗𝑗𝑁𝑁

𝑒𝑒𝑒𝑒𝑗𝑗=1 𝜙𝜙1
𝑒𝑒𝑒𝑒𝑗𝑗 + 𝑢𝑢2

𝑒𝑒𝑒𝑒𝑗𝑗𝜙𝜙2
𝑒𝑒𝑒𝑒𝑗𝑗 with 2N unknowns when N=the no. of elements  

• Now we’ve enforced functional continuity by  

 i. requiring 𝑢𝑢2
𝑒𝑒𝑒𝑒1 = 𝑢𝑢1

𝑒𝑒𝑒𝑒2 = 𝑢𝑢2
global etc. 

 ii. defining 𝛷𝛷2 = 𝜙𝜙2
𝑒𝑒𝑒𝑒1 + 𝜙𝜙1

𝑒𝑒𝑒𝑒2      etc.  

 Thus we have N-1 constraints and we can now write 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) = ��𝑢𝑢𝑖𝑖
global𝛷𝛷𝑖𝑖�

𝑁𝑁+1

𝑖𝑖=1

 

  

 We now have N+1 unknowns which equals the total number of nodes.  

• Therefore the rooftop functions are the same as the first order polynomials defined over 

each element except that now the functional continuity requirement is automatically 

satisfied. 

• In FE practice we don’t really use Cardinal basis functions. We use the local elemental 

functions and account for functional continuity as matrix assembly proceeds. 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  7  -  u p d a t e d  2 0 1 8 - 0 1 - 2 5       P a g e  29 | 32 

Development of Lagrange Quadratic Basis 

• 𝐶𝐶𝑜𝑜 functional continuity using quadratic interpolation over an element (instead of the 

required minimum linear), requires 3 nodes per element. 

 

 

• Consider the unit element and let the 3 nodes be defined such that 𝜉𝜉1 = −1, 

𝜉𝜉2 = 0, and 𝜉𝜉3 = +1. 

• The general form of the Lagrange quadratic basis function is: 

𝜙𝜙𝑖𝑖(𝜉𝜉) = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝜉𝜉 + 𝑐𝑐𝑖𝑖𝜉𝜉2,     𝑖𝑖 = 1,3 

and the elemental expansion is 

𝑢𝑢�𝑒𝑒 = �𝑢𝑢𝑖𝑖𝜙𝜙𝑖𝑖

3

𝑖𝑖=1

 

 

• We now require that 𝜙𝜙𝑖𝑖�𝜉𝜉𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑗𝑗 ,     𝑖𝑖 = 1,3;    𝑗𝑗 = 1,3   (this defines 9 constraints to solve 

for the 9 unknowns). 
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• Thus: 

𝜙𝜙11(−1) = 𝑎𝑎1 − 𝑏𝑏1 + 𝑐𝑐1 = 1 

𝜙𝜙11(0) = 𝑎𝑎1 = 0 

𝜙𝜙11(+1) = 𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1 = 0 

Hence: 

𝑎𝑎1 = 0,     𝑏𝑏1 = −
1
2

,     𝑐𝑐1 =
1
2

 

which leads to: 

𝜙𝜙1(𝜉𝜉) =
𝜉𝜉(𝜉𝜉 − 1)

2  

Similarly for 𝜙𝜙2(𝜉𝜉) and 𝜙𝜙3(𝜉𝜉) and we have: 

𝜙𝜙2(𝜉𝜉) = 1 − 𝜉𝜉2 

𝜙𝜙3(𝜉𝜉) =
𝜉𝜉(1 + 𝜉𝜉)

2  
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Notes 

• Again we note that the generic expansion is written over each element as 

𝑢𝑢�𝑒𝑒𝑒𝑒 = 𝑢𝑢1𝑒𝑒𝑒𝑒𝜙𝜙1(𝜉𝜉) + 𝑢𝑢2𝑒𝑒𝑒𝑒𝜙𝜙2(𝜉𝜉) + 𝑢𝑢3𝑒𝑒𝑒𝑒𝜙𝜙3(𝜉𝜉) 

Thus the coefficients in the expansion for 𝑢𝑢�𝑒𝑒 equal the value of the function at the node 𝜉𝜉𝑖𝑖. 

This is only possible due to the form of the basis/expansion functions! 

• We still only have 𝐶𝐶𝑜𝑜 functional continuity between elements. We do have non-trivial 2nd 

derivatives within the element. However the 2nd derivatives are not defined at inter-element 

boundaries! 

•  Cardinal Basis 
              # of elemental unknowns                                3𝑁𝑁 
              # of functional continuity constraints             𝑁𝑁 − 1 
              Total number of global unknowns                2𝑁𝑁 + 1 
 
We have  
 N+1 vertex nodes 
 N mid-side nodes 
 2N+1 total number of globally defined basis functions 
Note that 2N + 1 also equals the total number of nodes for N elements. 
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• Piecing together the element functions we arrive at the following set of 2N + 1 
Cardinal basis functions: 
 
  
  
  
  
 
 
 

• Each function is associated with 1 global node and is defined such that inter-element 
continuity is assured. 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) = � 𝑢𝑢𝑖𝑖𝛷𝛷𝑖𝑖(𝑥𝑥)
2𝑁𝑁+1

𝑖𝑖=1

 

 
Higher Order Lagrange Interpolation can be treated in similar ways 

1. Add more nodes which allows us to define more interpolating functions of higher order. 

2. Require each interpolating function to be equal to unity at the node it is associated with 
and zero at all other nodes within that element 

3. The unknown coefficients will equal the functional value at the nodes! 

 

 


